El uso de la Inteligencia Artificial (IA) ha comenzado a ser cada vez más cotidiano. Sus aplicaciones en salud están demostrando ser un complemento de la práctica clínica con buenos resultados. Sin embargo, incorporar tecnologías disruptivas en medicina no resulta fácil, por los principios de no maleficencia, beneficencia, autonomía y justicia que debe velar el acto médico, y por ser complejo y difícil romper paradigmas en un entorno donde la experiencia y la percepción clínica son fundamentales.
Desde el uso del termómetro a algoritmos computacionales que diagnostican enfermedades en imágenes médicas con mayor precisión que el ojo humano, las tecnologías han debido pasar por la demostración científica de sus beneficios. Para ello, actualmente la medicina basada en la evidencia se complementa con técnicas computacionales modernas de procesamiento de grandes volúmenes de datos que antes no era posible realizar, obteniendo valiosa nueva información que se traduce en una prevención y detección temprana de enfermedades más oportuna, diagnósticos más certeros, intervenciones y tratamientos cada vez más personalizados junto a un seguimiento e interacción automatizada entre pacientes y centros de salud. Existe cada vez más investigación en las distintas áreas de las ciencias de la salud que lo demuestran.
En la presente revisión se busca recorrer algunos hitos de la incorporación del aprendizaje automático e IA en salud, y proyectar cómo desde nuestras instituciones podemos aportar mediante investigación, desarrollo e innovación para que estas tecnologías tengan un impacto positivo en beneficio de los pacientes.